- 1) Given that $\vec{u} = \langle 2, 1, -2 \rangle$ and $\vec{v} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ find the following:
 - a) $\vec{u} \cdot \vec{v}$
 - b) $\vec{u} \cdot \vec{u}$
 - c) $\|\vec{u}\|^2$
 - d) $(\vec{u} \cdot \vec{v})\vec{v}$
 - e) $\vec{u} \cdot (2\vec{v})$

2) Given that $\|\vec{u}\| = 8$, $\|\vec{v}\| = 5$, and the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$. Find $\vec{u} \cdot \vec{v}$.

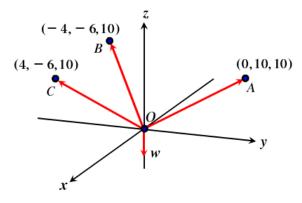
3) A street vendor sells a apples, b oranges, and c mangos, on a given day. He charges \$2 for apples, \$1.50 for oranges, and \$1 for mangos. If $\vec{v} = \langle a, b, c \rangle$ and $\vec{p} = \langle 2, 1.5, 1 \rangle$, what is the meaning of the dot product $\vec{v} \cdot \vec{p}$?

4) Find the angle θ between the vectors:

a)
$$\vec{u} = \cos\left(\frac{\pi}{6}\right)\mathbf{i} + \sin\left(\frac{\pi}{6}\right)\mathbf{j}$$
 and $\vec{v} = \cos\left(\frac{3\pi}{4}\right)\mathbf{i} + \sin\left(\frac{3\pi}{4}\right)\mathbf{j}$

b) $\vec{u} = \langle 1, 1, 1 \rangle$ and $\vec{v} = 2\mathbf{i} + \mathbf{j} + -\mathbf{k}$

- 5) Determine whether \vec{u} and \vec{v} are orthogonal, parallel, or neither.
 - a) $\vec{u} = \mathbf{j} + 6\mathbf{k}$ and $\vec{v} = \mathbf{i} 2\mathbf{j} \mathbf{k}$
 - b) $\vec{u} = \langle 2, -3, 1 \rangle$ and $\vec{v} = \langle -1, -1, -1 \rangle$
 - c) $\vec{u} = \langle \cos \theta, \sin \theta, -1 \rangle$ and $\vec{v} = \langle \sin \theta, -\cos \theta, 0 \rangle$


6) For what values of b are the vectors $\langle -6,b,2 \rangle$ and $\langle b,b^2,b \rangle$ orthogonal?

7) The vertices of a triangle are (2,-7,3), (-1,5,8), and (4,6,-1). Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning.

- 8) Find the direction cosines of \vec{u} and demonstrate that the sum of the squares of the direction cosines is equal to 1
 - a) $\vec{u} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$
 - b) $\vec{u} = \langle a, b, c \rangle$

9) Find the direction angles of $\vec{u} = \langle -2, 6, 1 \rangle$.

10) A load is supported by three cables, as shown in the figure below. The tension in the cable OA is 200 Newtons. Determine the weight of the load w.

- 11) Given that $\vec{u} = \langle 8, 2, 0 \rangle$ and $\vec{v} = \langle 2, 1, -1 \rangle$ find the following:
 - a) The projection of \vec{u} onto \vec{v} .
 - b) Find the vector component of \vec{u} orthogonal to \vec{v} .

12) An object is pulled 10 feet across a floor, using a force of 85 pounds. The direction of the force is 60° above the horizontal. Find the work done.

13) Find the work done by a force $\vec{F} = 10\mathbf{i} + 18\mathbf{j} - 6\mathbf{k}$ that moves an object from the point (2,3,0) to the point (4,9,15) along a straight line. The distance in measured in meters and the force in newtons.

14) Find the angle between a cube's diagonal and one of its edges.

15) Find the angle between the diagonal of a cube and the diagonal of one of its sides.

- 16) Given the functions $f(x) = x^2$ and $g(x) = x^{1/3}$ find the following:
 - a) All the points of intersection of the two functions.
 - b) The unit tangent vectors to each curve at their points of intersection.
 - c) The acute angles between the curves at their points of intersection.